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THE WEAK NON-LINEAR FLUCTUATIONS IN THE RADIUS OF A CONDENSED DROP 

IN AN ACOUSTIC FIELD* 

N.A. GUMEROV 

The non-linear effects of heat and mass transfer of a drop in a vapour 
medium *hen there is a periodic change in the pressure brought about by 
an acoustic wave, the wawlength of which is considerably greater than 
the radius of the drop, are investigated. The asymptotic equations which 
describe the behaviour of the mean radius of the drop in an approximation 
which is quadratic in the field amplitude are obtained using the multiple 
scale method /2/ on the basis of the closed system of equations, which 
describes spherically symmetric processes around a single drop /l/. 

When investigating the propgation of sound in mixture of a vapour with droplets, it is 
assumed in the linear formulation /3/ that the radii of the drops pulsate around stationary 
positions as a result of periodic phase changes, However, as a consequence of the manifest- 
ation of non-linear heat and mass transfer effects, the amounts of the fluid which have 
vaporised and condensed during a single vibrational period will, in general, be different 
(the "rectified heat transfer effect" /4/J, After a time equal to a large number of vibra- 
tional periods, the mean radius of the drop may have appreciable changed and, correspondingly, 
there may also be changes in such important parameters characterizing the weight as a whole 
as the mass content of the disperse phase and the size distribution function for the drops. 

2. Formulat&m of the problem. A sphericaldrop of radius a is placedinanunbounded 
space occupied by vapour, which is considered within the framework of the model as an ideal 

gas. In the unperturbed state, the vapour and the liquid are in equilibrium, that is, p,= 

P. (T& where p and T are the pressure and temperature, parameters on the saturation line 
are given the index 8 end the parameters for the unperturbed state are given an asterisk. When 
acoustic waves of wavelength L>a (L = 2&,/o, where CC is the velocity of 

sound in the vapour and w is the angular frequency) act on this system, it may be 
assumed that, in a coordinate system associated with the centre of the drop and in a domain 

r<L where r is the radial coordinate measured from the centre of the drop, the temperature 
and velocity distributions in the fluid and in the vapour will be spherically symmetric, and 
that the pressure will be solely dependent on the time t :p =p(t) (homobaricity /l/j. In 
this case the closed system of equations and boundary conditions which describe the heat and 
mass transfer between an incompressible drop and its vapour in a field of variable pressure 
has the form /l/ 

pg(t) = R,T,(q, t)pg(rlq t), Pl = conat 

Here, PI wt Q and 5 are the density, the radial velocity, the reduced thermal flux 
on the interphase boundary and the intensity of vaporization per unit area of surface, L,c, 
v, R, and 1 (quantities which are assumed to be constantsjare the thermal conductivity, the 
heat capacity (in the case of thegas,,this is at constant pressure), the adiabatic index of 
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the gas, the gas constant and the latent heat of vaporization, and (3 (pg, I'J is the 
coefficient of accommodation, the dependence of which on temperature and pressure is assumed 
to be known. The indices g and 2 refer respectively to the gas and the liquid while the 
parameters on the interphase boundary are indicated by the index a. In writing down (l.l), 
use was made of the space-time transformation (r,t)-+(n, t), where 11 = r/a(t). This enables 
one to reduce the problems from domains with a variable boundary T =. a (t) to problems with 
a fixed boundary. 

We shall subsequently study the solutions of system (1.1) when the changes in the 

pressure around the value p* are governed by periodic laws 

pB = p* (1 + E(P (1)), 'p (t) = cp (t + 2nlo), I cp I < 1 (1.2) 

where s,(t) is a periodic function which can be represented in the form of a Fourier series. 
The relative amplitude of the pressure perturbation is taken as the small parameter of the 
problem: O<e<l. 

2. Method of aotution. The radial velocity and the density of the gas can be 

eliminated from system (1.1) and the remaining unknown dependent variables are sought in the 
form of the asymptotic series 

T, = T, (8, + eE$ + e20, + . . .), T, = T, (UP) + EU~) f&2$).+ , . .) 
a = U,, (1 -f EUl + EZU2 -t , . .), @z = h,T,, @’ + &@’ + Ed@’ + . . .) 

E=., ‘@*’ (h + eil + e2iz + a..) (%a=& 9 pg*=* 1 a=g,l) 
(2.1) 

Use was made of the method of multiple scales /2/ in constructing uniformly good expansions. 
According to this method the functional dependence of the unknowns a,, u,(l), z&(g) and so on 
'2" = 9, 1, Z,...) on t is treated as a dependence on a set of times {tk), tK = ekt, k = 0, 1, 

, . . .1 that is, the operator for differentiation with respect to t is expanded in the 
asymptotic series 

d 
-=-$-+e-+$-#-e?-&+... dt 

The function q(t) occurring in (12) must be considered as a function solely of the 
"fast" tiara tO. 

By substituting (1.2), (2.1) and (2.21 into (1.1) and collecting the terms in the same 
powers of E, it can be seen that 8, z 1, z@) E 1, qo(@ E 0 (a = I, g), j0 = 0, a, = a, (&, t,, . .) 
and the linear inhomogeneous system 

(2.3) 

is obtained for determining the m-tb (m> 0) approximation. 

Here, hk is the Kronecker delta and f,(a) are functions which are determined from 
approximations lower than the m-th approximation (a = 1, g, a, j, q). 

By &,-periodic functions, we shall henceforth understand functions which are periodic 
with respect to the fact time to and are representable in the form of a corresponding 
Fourier series in t0 

.c (t*, t,, 12, . .) = Re {x I,~ (tl, t,, . . .) ei~~02.} 
7L==” 

(2.4) 
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where x,@ are complex-valued functions (complex amplitudes). 
The search for solutions of (2.3) in the class of b-periodic functions leads to systems 

of the type (2.3) for the complex amplitudes where the operator a/at, passes into Lon. fn 
particular,the complex amplitudes of the temperature distributions in the liquid and in the 
gas satisfy the equations 

Jf, for any Aa {Jf<}> 0, the modulus of the function f($$ (q,tl, tar . ..) decraases to a 

sufficient extent 88 n-+00 (/fig 1 = o(qwB)), the solutions of the i~o~eneo~ problems 
(2.5) are representable in the form 

From this, it is possible to find the complex amplitubs of the thermal. fluxes 

It therefare foUows from (2.31, (2.41 and (2.7) that, in the m-th approximation, the 

unknown complex amplitudes u& @L,, jL* satisfy the linear 

&JL,=y,* 

0 

-so D CP 

0 k&’ [h’,) + k&‘] 1 

inhomogeneous algebraic equation 

Let o+O, then, when nf 0,‘ it is obvious that detL,=$=O and a sohtion X,;, etists 
and it is unique, Wfien n = 0. the matrix of the system degenerates and the rank&, = 2. In 
this case, the condition ranks* = 2, 
n===O 

where M. is the extended matrix of the system athen 
will be a necessary and sufficient condition for the solution to exist. This conditfon 

can be written in the expanded form 
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Thus, it has beenshown that thesolution of system (2.3) in the class of t,,-periodic 
functions only exists if condition (2.9) is satisfied which actually "controls" the behaviour 
of the mean values. If condition (2.9) is satisfied, then the solution is unique with an 
accuracy up to the solution of the homogeneous system (2.31 which hasthe form 

3. Tke first appzwbmatim. Stationmy putsatims. It is seen from (1.1)) 11.2) and 
(2.1)-(2.31 that, to a first approximation (m = l), the functions fl@’ and their complex 
amplitudes fiPJ have the form 

W o 
fl E3 fg’ s 0, a = j, q, g, 1; n = 0, 1, 2, _ . .; f:“J e= f$” = - a,x&%z,/& (3.1) 

The condition for the existence of te-periodic solutions when m = 1 yields 

6% + k~k~'~}~~~~~t~ = -k~~k~'(k~ - k,)x,cp," (3.2) 

This equation is integrated: 

%ao2 + k&i1 doa, xs - k,,k,k;'(Ic, - k,) y+,%cgtl + c(ts, is, . . .) (3.3) 

It is immediately seen from this that, when (Icy - k,)cp,"+ 0, the mean radius of the 
drop will change in the scale of the "slow" time 1r. It should be mentioned that, when 
cp,"#Oo, fluctuations in the pressure do not occur around the mean value p* but around 
P* (a + =4b01 or, in other words, the system is not at equilibrium form the outset but weakly 
perturbed about this position. The quantity k, - kg represents the difference between the 
angular coefficients of the tangents to the adiabatic curve and the saturation line at the 
point (T,,p,) in the (T,p) plane, The sign of this quantity determines what the signs of 
the difference between the temperature in the gas remote from the drop and the saturation 
temperature, to which the temperature of the surface of the drop tends, will be. 

Now let condition (3.2) be satisfied. Then, to -periodic solutions exist for system 
(3.2) when m = 2. 

When n# 0, it follows from (3.1) that the components of the inhomogeneity vector Y,, 
in (2.8) have the form gin1 = 0, y1,2 = - ksa,qs"dgm', yzsns = k~~~'h~(g). Whence, by using 

Crawr's rule, the cou@ex amplitudes ai*', %I* and jtrio can be found. 

c&, = - k,rp,,'A.(na'fA,,, a = e,j,a; A,, = detL, 

A$?= ~,,a,k;'d;;'[(k~ - k,)@'-kk,k;h:'J, A?'= -k,,s;;lA$) 

AZ) = .~,(a& + hj,!'), A,, = d&'A~f'-- Ai@ 

(3.4) 

The dependences of the phase o== agun and the reduced amplitude A = l~,,-~fe,~/ of the 
fluctuations in the radius of a Water drop in water vapour at a pressure P*= 0.i 
MPa on the frequency and mean radius are illustrated in Fig.1. The solid lines correspond 
to calculations with an accommodation coefficient fi* = 0.04. The dashed lines were calculated 
usingaquasi-equailibrium phase transition scheme (this scheme is realized, if 6 formally 
tends to infinity and T,-= TB(pB) in the case ofa quasi-equilibrium phase transition scheme 
/l, 4/l. In this case the dependence of the phase and amplitude of the fluctuations on (I~ 
and w occurs in (3.4) in the form of a dependence on a single selfsimilar parameter oa,Vxg. 
Curves l-4 correspond to a frequency v, equal to 1, 10, 100, and 1000 Mz. When the fre- 
quency is reduced the solid curves tend to move towards the dashed curves which is indicative 
of the greater "equilibrium nature"of the phase transition at low frequencies as compared 
with that at high frequencies. 

At larger radii og and a fixed frequency w, the value of the argument of #, as follows 
from f3.41, tends to its limiting value 

$- = - arctg (f + Ko',l*); 

WV? 2oc$=jna, K = k;‘kti (1 + k>.k,“t) 

and --nt4<$_, < --nfZ. Xn the region of low values of oa,V?Q , the amplitude A increases in 
inverse proportion to WZ,~(A- k, (k,, - k,) i(wa,‘hQ fi + kSd&,)l-l) and rp - n/2. It should be noted in 
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this connection that, in order for the reasoning to be correct, it is necessary to assume 
that the constraint on the frequencies 
satisfied. Otherwise, 

, amplitudes and radii bp?s~~ (1 + k,d&,) ) ek, (ky - k,) is 
the term eo,in the corresponding expansion (2-l) Cannot be considered 

as being small compared with unity, 

20 

a 
U.01. Ql I 

The e*ressions for the complex amplitudes of the temperature distributions and the 
heat flux on the interphase boundary from the gas side have the form 

Fig.1 

(3.5) 

according to (2.6), (2.7) and (3.1). 
When n = 0, the determinant of the system is equal to zero. From Eq.(2.8) and con- 

dition (3.2) which ensures the compatibility of the equations, a solution is found with an 
accuracy up to the solution of the homogeneous system 

(3.6) 

Eqs.(3.4)-(3.6) determine all the harmonics of the required functions when m=l. The 
problem of the pulsations of a drop may therefore be considered as being solving in the first 
approximation. 

However, if the system is at equilibrium (cpo" = 0) at the beginning then, according 
to (3.2),in the first approximation the radius of the drop will execute stationary flucta- 
tions (&z,/8t, =0) and it is not possible to determine the change in the mean radius of the 
drop from an analysis of the first approximation (linear analysis) since it will change on 
a scale which is "slower" than that of tl (the non-linear effect). 

4. the equation fop the dynamics of the mean rcrdius of the drop. It is sub- 
sequently assumed that 'p,,' = 0. In this case all the required functions in the first 
approximation, apart from, perhaps, a,,', are independent of tl. Hcmever, in the case of 
the given problem, one should put alo = 0 since the nreaning of a mean radius is embedded 
in a,. From this and from (l.l), (1.2) and (2.1)-(2.3), one finds the inhomogeneities 

I?' (a = a j Q g 1) 9 9 9 7 in the second approximation (m = 2) 
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where & and br are the dimensionless derivatives of the coefficient 
respect to pressure and temperature which characterize the "non-linear 
of the phase transition. 

For the existence of t,, -periodic solutions of system (2.3) when ,. I^ 

of accommodation with 
non-equilibrium nature" 

m = 2, it is sufficient 
that the zeroth harmonics f’2 should satisfy condition (2.9). The zeroth harmonic of the 

product of two functions of the form 

can be isolated by integrating this product over the period of the fluctuations. 

Since the functions fr’ are sums of products of this type then, while omitting the 
rather unwieldy reduction associated with evaluating the integrals with respect to t, and n, 
condition (2.9) can be written in the form of the second-order differential equation 

(4.2) 

E, = 8 “E, (Jfc), E, (z) = s e-zt:-3 dc 
1 

(the bar indicates a complex conjugate). The magnitude of k,, in the factor (1 - kp) can be 
neglected compared with unity since the initial system (1.1) is valid inthe domain of thermo- 
physical parameters remote from the critical point, that is, when ko((l. 

‘Ihe results of calculations using Eq.(4.2) for a system with the thermophysical parameters 
of water and water vapour at a pressure ~.=0.1 MPa are shown in Figs.2 and 3. On account 
of the lack of reliable data for the coefficient of accommodation which, moreover, is sensitive 
to small concentrations of impurities, surfactants 
figures were calculated at $* values equal to 4x10 

cad so on 
, 4x10- 1 

the curv:f ~:;~e;;;;di~u$s, 
and 4x10 

andusing aquasi-equilibrium phase transition scheme (the broken curve). In the versions 
shown in the figures, the parameters characterizing the "non-linear non-equilibrium nature" 
BP and Br had the values &=O. &=1.5. This corresponds to the theoretical formula due 
to Landau /4/. It should be noted that the variation of & within reasonable limits had a 
weak effect on the results of the calculations. Ihe frequency v of the acoustic field, which 
was assumed to be monochromatic, was equal to 100 kHz for the curves with fi*im. When the 
quasi-equilibrium phase transitionscheme is used, the variables plotted along the coordinate 
axes are selfsimilar. 

A phase portrait of the equation for the dynamics of the mean radius of the drop (4.2) 
is shown in Fig.2. It is seen that, with the value of the thermophysical parameters which 
were used, the rate of growth of the mean radius of the drop is negative, that is, the drop 
is evaporating on average. At large a,, each of the phase trajectories tends to its own 
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horizontal asymptote which is determined by the coefficient of accommodation p. which suggests 
that a linear law exists for the reduction in the mean radii of the drops when their dimensions 
are sufficiently large or the frequencies are sufficiently high. At small values of n0 and 
not too small values of B, the rate of decrease in the square of the mean radius (of the mean 
surface) of the drop is close to being constant, 

Fig.2 Fig.3 

Fig.3 shows the dependence of the mean radius of the drop on the time tl obtained by 
numerical integration of Eq.(4.2). The shape and the mutual arrangement of the curves for 
different values of & depends, as follows from the phase portrait in Fig.2, from the choice 
of the initial condition fzoO= a,(O) in the Cauchy problem for (4.2) (in the versions which 
have been presented, % = 10 pm) . According to the calculations, the mean radius of the drop 
decreases to zero. In this connection, one should recall the constraint imposed on the mean 
radius which was stipulated above and, also, the fact that the given theory only considers 
those radii when a continuum description of the medium is permissible /l/. Nevertheless, one 
may speak of the lifetime of the drop which, judging from the calculations, increase appreci- 
ably as I% decreases. Hence, in the case when fi,=0.04 which is the value recommended 
for water /l, 4/, it may be several times greater than that calculated using the quasi-equi- 
librium phase transition schemecthis depends both on the frequency of the field and on the 
initial radius aoo). 

It may be pointed out that the dynamics of the mean radius of a condensed drop in an 
acoustic field is determined according to (4.2), (3.4) and (3.5) by the eight independent 
dimensionless parameters (&,, &,, fly, k,, 4, ko, kb, kK) plus the dependence on the initial 
radius, the frequency and the form of the fluctuations. This makes a complete analysis of 
Eq.(4.2) in the parameter space exceedingly difficult. It is therefore useful to consider 
certain characteristic limiting situations. In particular, simpler asymptotic equations can 
be obtained from (4.2), (3.4) and (3.5) which describe the behaviour of the mean radii of 
large and small drops in high- and low-frequency acoustic fields. 

Let the frequencies w or the radii a, be so large that the characteristic thickness of 
the non-stationary temperature boundary layer in the gas 6,=[%,/(2o)r/~ is much smaller than 
the size of the drop Sg< a,. In this case, the characteristic thickness of the analogous 
boundary layer in the liquid 6, = [X11(20)l"S will also be much smaller than a, since, as a 
rule, x1 < % and even XI < xg. By using the asymptotic representations of the functions 
appearing in (4.2), (3.4) and (3.5) when the values of \&,I'/* are large and solely retaining 
the leading terms in the expansions , one can obtain the equation (the high-frequency approxi- 
mation) 

Here, R(x) = P(x)/Q(x) is a rational fractional function, the coefficients of which 
are defined in terms of the thermophysical parameters of the phases. 

p (I) = ‘/2b,x* + b,x + b,, Q (5) = ‘/,K% + Kx + 1; K = k, (1 + kdl/Wkv 
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For many substances K> 1 and, therefore, usually only the leading terms are retained 
in the expressions for the coefficients b, (i = 0,1, 2) 

Now let the function 'p contain a finite number of harmonics (qn" x- 0 when n>N) 
and the frequencies and radii be so small that 6x > a,, 612a ao2, (k~/i20)(a,/6,)*< 1 in the case 
of the highest frequency harmonic (relatively thick temperature boundary layers). By using 
the asymptotic representations of the functions appeaxing in (4.2) I (3.4) and 13.5) for small 
value of /s,p/* and retaining the leading terms in the expansions (the magnitude of kr may 

be large, kP<l), (4.2) can be xeduced to the form (the low-frequency approximation) 

G, (I) = +$ , R, (4 = SJ~ + al,4 + uo, 
7, 

5, Discz#siolt. The overall phase transition scheme can be thought of as consisting 
of two different mechanisms: a diffusion mechanism (resulting from the thermal conduction of 
the media) and a kinetic mechanism (associated with the deviation of the temperature of the 
surface of the drop from the saturation temperature). Needless to say, such a separation is 
arbitrary since the kinetic mechanism also involves molecular transport processes in the gas, 
that is, thermal conduction. The quasi-equilibrium phase transition scheme is a scheme in 
which there is only a diffusion mechanism. It is possible to introduce the concept of a 
zone where the kinetic mechanism is operative (also, see /5/) and the characteristic width 
of this zone in the gas & is, by definition, equal to 

8 

flere, the explicit expression fox k, has been taken from the Clausius-Clapsyron equation 

/l/, G = tYP*Ipp*)Y’ is the velocity of sound in the gas and the thermal conductivity of the 
gas can be eliminated from the relationship since ~g-&Cg, where Lf is the mean free path 
of the molecules in the gas. 

If sea ao, the non-equilibrium phase transition kinetics have an effect on the quasi- 
stationary temperature distributions. This situation is only possible in the case of extremely 
small value of B or a small value of a, and is atypical. Usually, &~<aOand the correspond- 
ing terms in (4.2)-(4.4) can be neglected. Then, as can be seen from (4.31, the mean radius 
of a drop in a high-frequency field varies linearly. 

The non-equfl.ihxium phase transition kinetics have an effect on the behaviour of the 
drops in high-frequency fields when 6,<~,,6~<a, and the magnitude of 8, is comparable 
with & or 6{. Hence, estimates according to Eq.(4,3) for water when pr = 0.1 MPa and 
f$+ =0,&i show that the quasi-equilibrium scheme (H(l/~g)~ H(0) = b,) can only be used at 
frequencies Y = w/2ns 0.1 kHz. Both mechanisms manifest themselves in the range 0.1 kHz 
<Y<l.O MHZ while, in the range Y> 1.0 MHz, tie kinetic mechanism plays the predominant 
role. Several estimates and illustrations of the influence of the non-equil~ri~ nature of 
the phase transition on the dispersion and attenuation of sound in a mixture of vapour and 
drops have been given in /3/. 

At low frequencies ~~k~.~6~~~~~~~~~4~ ti) and, also, in the ca5e of a quasi-equilibrium phase 
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transition (d,, = 0), the right-hand side of (4.4) is independent of the frequency, and the 
behaviour of the mean radius is determined by the mean square value of the function cp(<$> = 

Ii, (I cpl" lZ f . . . $_ 1 (PNO I")). From (d.d),it is possible to find the lifetime of a drop (tL) in the 
caseof the quasi-equilibrium phase transition scheme since, when d, = 0, the equation is 
integrated and 

In spite of the fact that, according to the calculations which have been carried out, 
condensed drops under normal conditions usually evaporate under the action of acoustic fields, 
one should be warned against prematurely arriving at the conclusion that this phenomenon 
will be observed in the case of the drops of other substances or drops of water under other 
conitions. Domains exist in the parameter space where the drops will grow (for example, the 
coefficient a, in (4.4) and (5.1) is negative) , and situations are possible when stable and 
unstable zeros (stationary and threshold radii) arise in the phase portrait of Eq.(4.2) or 
(4.4). The detailed analysis of the phase portrait of the equation for the dynamics of the 
mean radius of a drop and also the physical realizability of "anomalous" parameter domains 
is 

1. 
2. 
3. 

4. 

5. 

__ 
obviously of interest in its own right. 
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